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AlJltnd-Plane stress of a tom sheet of finite extent is considered. The tear or crack. which is Wlstressed,
runs from the boundary and is of fairly arbitrary shape. The sheet is reinforced by a continuous network of
two families of inextensible fibres; this models a coated fabric or any other hiahly anisotropic material with
two "stroJII" directions. The sheet is finitely deformed under in-plane dead 10adiJII of its boundary. For
much of the paper the stiffness of the sheet. other than that contributed by the fibres, is assumed DeIliII'bIe
compared with the applied loads, thus hilhligbtiJII the effects of the stroJII anisotropy; otherwise, the
material response is taken to be non-linearly elastic. Expressions for the stresses at the crack-tip are
obtained in terms of the boundary loadillll. Equivalent expressions are also obtained for the eDel1Y release
rate when the tear advances in an arbitrary direction (not necessarily parallel to the previous direction of
the crack). Except in the limit of infinitesimal elastic deformation. there is no simple relation between the
stress intensities (as measured by the fibre forces) at the crack tip and the energy release rate. Three
possible fracture criteria-analogous to those based on maximum stress intensity or energy release rate in
linear elasticity-are discussed. and their implications are illustrated by analysing the example of a tom
rectangular sheet under uniform biaxial tensile loadillll.

I. INTRODUCTION

The principal aims of this paper are to evaluate the stress effects of cracks in strongly
anisotropic sheets undergoing finite deformation, to use the results to formulate simple fracture
criteria analogous to those applied to isotropic bodies and to assess the relative merits of such
generalisations. The anisotropic material considered is characterised by having two "strong"
directions, for each of which the extensional modulus is much greater than the shear moduli
associated with that direction. Such anisotropy can occur naturally, but is most frequently
found in man-made fibre-reinforced composites in which a relatively weak matrix is reinforced
by families of very strong fibres. The mechanical response of such a material is usually not just
anisotropic but llighly anisotropic, so that isotropic theory would not provide even a rough
approximation to its behaviour under most loading conditions. Hence the validity of fracture
criteria proposed on the basis of experience of fracture of isotropic or weakly anisotropic
materials is particularly suspect, and it is important to determine how the strong anisotropy is
reflected in the fracture properties of the material.

Conventional stress analysis for anisotropic materials (as described [1-4] for linear
elasticity and [5,6] for plasticity) is considerably more complex than in the corresponding
isotropic theory, especially as the anisotropy becomes more pronounced. Various crack
problems involving infinite or semi-infinite bodies of particular anisotropic elastic materials
have been examined by a number of authors[7-12] and some analytical solutions have been
determined. However, in general the equations require numerical solution, and for bodies of
finite extent this is almost invariably the case. Even then there are few such solutions in the
literature, and the author knows of none where large deformations are involved.

In order to obtain analytical solutions which would demonstrate qualitatively the different
behaviour produced by strong anisotropy, it has been found fruitful in many cases to model
such materials as "ideal fibre-reinforced materials". This model treats the "strong" directions as
if they were inextensible cords which are convected with the deformations. The theory of
incompressible elastic materials reinforced by inextensible cords was first developed by Adkins
and Rivlin[13] (further references are given in [14]), and their basic ideas of continuously
distributed inextensible fibres have now been incorporated and developed extensively in
theories which include elastic, plastic or viscoelastic behaviours (comprehensive descriptions
have been given by Spencer[l5, 18]).
S~ Vol. 18. No. ~E 705
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Such an idealisation highlights the difference in response of a strongly anisotropic body as
compared with that of isotropic bodies. There are two examples which are particularly relevant
to fracture, and both have been substantiated for real highly anisotropic elastic materials by
reference to exact and asymptotic solutions in linear anisotropic elasticity theory[l9-23]. The
first is the occurrence of stress-channelling, in which the stressing at any given point in a body
strongly affects the stress conditions found at large distances away, along any fibre (i.e. strong
direction) passing through that point. This feature implies that end effects are not now localised
to one or two typical diameters' distance from the boundary, as in isotropic elasticity, but can
possibly extend through the entire body. The second is the ideal theory's remarkable
prediction[24] of surfaces of singular stress occurring, as distinct from the conventional
isolated points of singular stress predicted in isotropic elasticity; in real highly anisotropic
materials these surfaces correspond to thin layers of high direct stress across which the shear
stress varies rapidly. The implications of such strong anisotropy for fracture properties and
crack propagation in plates undergoing infinitesimal elastic deformations have already been
studied by a number of authors. Of these, England and Rogers [25] and Thomas et al. [26]
considered the effect of a crack in a plate of finite size reinforced by one family or two
orthogonal families of fibres and they suggested failure criteria based on the fibre forces at the
crack tips. Sanchez and Pipkin[27] obtained the energy release rate for straight cracks
propagating normal to a fibre-family, and their results have been generalised by Pipkin and
Rogers [28] to include arbitrary crack directions. The latter authors also compared the crack
trajectories (not necessarily straight) predicted by both the critical fibre force and energy
release rate criteria for fracture.

Relevant problems involving finite deformations are the inflation of a line crack in a plate
reinforced by a single family of fibres [29] and the in-plane deformation of pure inextensible
networks containing a hole [30J.

In this paper we analyse the particular context of a sheet of finite extent with reinforcement
by a continuous network of two families of inextensible fibres. The sheet is finitely deformed
under the action of in-plane dead loading of its boundary (refer Fig. I). An unstressed tear runs
from this boundary, and we are interested in the conditions which determine whether or not the
tear extends and, if it does, in which direction. For much of the paper the stiffness of the sheet,
other than that contributed by the fibres, is assumed to be negligible compared with the applied
loads; otherwise the response is taken to be elastic, with a strain energy function suggested by
Pipkin[31J.

In the next section we introduce the relevant kinematics and stress function. The notation
adopted is that used by Pipkin[3tJ whose results, together with those of Rivlin[32J and
Adkins [33J, are quoted in this section. In Section 3 we determine the magnitudes of the stresses
in the fibres passing through the crack-tip in an unstiffened sheet, and the energy release rate
during crack extension is obtained in Section 4. The generalisation of these results to
inextensible networks with elastic stiffening is given in Section 5 and is related to the equivalent
linearised theory in the next section. In Section 7 we discuss the implications of the analysis in
providing fracture criteria. The analysis is applied in Section 8 to the particular example of
biaxial tensile loading of a torn, initially rectangular sheet. The final section is a discussion of
the results described in the paper and in particular considers whether a critical energy release
rate can provide an appropriate criterion for fracture of such highly anisotropic materials.

2. KINEMATICS AND STRESS

We consider a plane sheet with two families of inextensible reinforcing fibres that initially
lie along the X- and Y-directions of a system of Cartesian axes whose origin 0 is located at the
tip of the tear (refer Fig. I). In the reference configuration the sheet occupies the region iRo
with boundary ro. The sheet is treated as a two-dimensional continuum. so that every line
X =constant or Y =constant is a line of inextensible material. We assume no slipping occurs
between fibres of the two families so that each point (X, Y) in the sheet has the same two fibres
passing through it at each stage of the deformation; the directions of these two fibres are
described by the two unit vectors a and b.

In the plane deformations considered in this paper, the particle initially at X:;; (X, Y) moves
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Fig. I. (a) Undeformed configuration of the torn sheet. (b) Typical deformed configuration showing typical
a· and b-tibres.

to x(X, V), with

a = axlax, b = ax/avo

so that x may be obtained from a and b by integrating

dx =a dX +b d Y.

707

(2.1)

(2.2)

Rivlin (32) showed that fibre-inextensibility implies that the fibre families must consist of
congruent curves

a =a(X), b =b(Y), (2.3)

whenever a and b are not parallel and provided the fibres are unbroken. Hence the b-direction,
for example, is constant across the unbroken fibre Y =constant> O. but across Y =constant < 0
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the b-fibres can (and usually do) take different constant directions depending on which side of the
tear they are. In order to distinguish between the fibre-directions in the different regions of the
sheet, we use the notation shown in Fig. I; so in the segment OCD the fibre directions are lIo(X)
and bo( Y), whereas in ODE the directions are a_(X) and bo( Y).

For simplicity we exclude problems in which folds [31] occur; hence the current area 1 per
unit initial area must be positive at every point, with

1 =axb·k.

Here k is the unit vector in the Z-direction, perpendicular to the sheet.
For later use we introduce the vectors A( Y) and B(X) defined by

A=bXk, B=kxa,

and note that

A .b = 0, B . a = O.

(2.4)

(2.5)

(2.6)

Suffices will refer to the relevant a or b fields, so that Ao = bo x k and B_ = k x a_, for example.
The equilibrium state of stress in the deformed sheet is conveniently described [31] in terms

of a stress potential F(X, Y) introduced by Rivlin[32]. This is defined such that the force
exerted across a directed arc by the material originally to its right is the difference between the
values of F at the two end points of the arc. Then aF/a Y and aFIax are stress vectors with

aF/a Y = Taa +Sb, aFIax = - Tbb - Sa. (2.7)

Here the components Ta and Tb represent tensions in the fibre directions and are reactions to
the kinematic constraint of fibre-inextensibility. Not only are they arbitrary in the sense of
being independent of the magnitudes of the strain, but they can also be singular, in which case
the fibre carries a non-zero resultant force. Then integration of (2.7) shows that F is dis­
continuous across such a fibre, with the jump in F being parallel to the fibre and representing
the tensile force at each point of that fibre.

S denotes a shearing stress component. When the sheet is unstiffened

S= o.

If the sheet is elastically stiffened, we adopt Pipkin's constitutive equation

(2.8)

S = Ga' b/lll, (2.9)

which is equivalent to the strain energy density W per unit initial area being given by
W = GO -Ill), (2.10)

where G is the shear modulus.
Boundary values of F are determined by simply integrating the prescribed tractions R(so)

with respect to arc length So around the undeformed boundary roo In an obvious notation we
denote typical values of F along the directed segment AB, BC, ... of r0 by FAB, FBCt ••• , whilst
FA, FB, ••• indicate the specific values of F at A, B, . .. For convenience we let So = 0 at the
crack tip 0 and take F = 0 there. Then FA = 0 and FE - Fc, for example, is the resultant force
acting on the boundary segment CDE with

The convenience of dead loading is that these boundary values of F are the boundary values of
F in the deformed configuration also.
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As a final piece of notation, we let ~f(X) denote the difference between the boundary values of
a vector function f at the two ends of the b-fibre X, and similarly write ~f( Y) for the a-fibre Y. Thus

For unstiffened networks, Rivlin[32) has shown that the 8 and b fields through the sheet are
simply related to the boundary values of F through

Ka = ~F(X), Lb =- ~F(Y),

with the unit magnitudes of a and b implying that

K =I~F(X)I, L =I~F(Y)I.

(2.11)

(2.2)

The generalisation of these relations to stiffened sheets in the present case of no folds is (from
[31))

K'a = ~F(X) - Ok x ~x(X), L'b = - ~F( Y) + Ok x ~x( Y), (2.13)

where K' and L' are equal in magnitude to the respective right-hand sides. From (2.2) we see that
h(X) and ~x( Y) are integrals of b and a over the length of the relevant fibres. Hence (2.13) do not
now give explicit expressions for a and b in terms of the boundary tractions, but are in fact a pair of
coupled non-linear integral equations for a and b. Their solution has been considered by
Pipkin [34, 35] for 0 both small and large compared with the magnitude of the boundary loads.

Finally we quote the result[31] given by integrating (2.7) along the relevant fibre-directions:

F = r I(X, Y){N( Y)a(X) + M(X)b( Y)} + Ok x x(X, Y), (2.14)

where M(X) and N( Y) are arbitrary. For unstiffened sheets, M and N may be determined
directly from the traction boundary conditions, with

M(X)=B· F= -a'kxF, N(Y)= A·F=b·kxF, (2.15)

where the convenient values to take for F are those at the relevant points on the boundary. The
equivalent results for elastically stiffened sheets are

M(X)= -a' kX(F- Okxx), N(Y) = b· kx (F- Okxx), (2.16)

and we note that these are identical with the "unstiffened" result (2.15) provided we replace F
with F- Ok x x in (2.15).

3. SINGULAR STRESSES AT THE CRACK TIP

The presence of singular fibres is associated eitber with the deformation of boundary fibres
or with the application of concentrated loads on the boundary or with fibres across which the
other fibre-direction is discontinuous. This last condition applies to a crack tip where it is
evident that in general both a and b directions are discontinuous. The two tip fibres Be and BD
are then singular, each carrying finite loads. Moreover, unlike when the deformations are
infinitesimal, these loads can themselves be discontinuous, with their magnitudes P_, Po, Q­
and Qo (refer Fig. Ib) determined either directly from simple statical equilibrium or by using
(2.14) together with (2.15) or (2.16).

For example, consider the region ABCO shown in Fig. 2 as a free body. Assuming the sheet
to be a pure network (0 = 0) we find tbat equilibrium of ABCO requires

(3.1)

where 8_ and bo now represent their values at the tip 0, and Rb is the resultant of the tensions
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Fig. 2. Forces acting on the free body eGA•.

in the b-fibres acting on the tip fibre OC of length L.:

Taking the scalar product of Ao with eqn (3.1) then immediately gives

Alternatively, eqns (2.15) and (2.4) give

M(O )=0, N(O+)=bo'kXFc, J(O-,O+)=a_Xbo'k,

so that

bo·kxFcF(O-, 0+) =, b k a_.a_ x o'

(3.2)

(3.3)

Since the region OMA is a dead region[30j, then F is zero there, so the discontinuity in F across
the fibre OE at 0 is

- P_a_ = 0- F(O-, 0+)

yielding the required result (3.3).
Similarly, consideration of regions ODEA, OEA and OAB as free bodies shows that the

remaining tip-forces are given by

with
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In all these relations, the quantities 80, bo, 8_, 8+, b_ and b+ are evaluated at X =0 and Y =O.
Conditions (2.11) and (2.12) show that in terms of the boundary tractions they can be
determined as

bo= FE-Fc
IFE - FeI'

FB
8+ = -IFBI' (3.4)

Then substitution and some elementary manipulations give

Po= FE XFc ' k (FD - Fdx(FD- FB)' k IF
D

- FBI
(FD - FB) x Fc ' k(FE- Fd X(FD - FB)' k

Qo = - FBXFD • k (FD - Fd x (FE - Fd . k IFE - FeI
(FE -Fe> XFD ' k(FD-FB) x(FE- Fd' k

FcxFE'k I I
P-=FDX(FE-Fd.k FD

FDxFB'k I I
Q-=FcX(FB-FD)'k Fc · (3.5)

Thus the loads carried by the fibres at the crack tip may be expressed directly in terms of the
given boundary tractions, for any geometry and boundary conditions.

These results (3.5) also indicate that the singular tip stresses are independent of the shape of
the tear. However, this observation is subject to the restriction that the tear meets the tip fibres
BD and CE only at the tip and nowhere else. Otherwise singular stresses would occur not only
along the tip fibres but also along the fibre originally tangential to the tear. Thus, in the case
illustrated in Fig. 3, not only are C.E, and OD1 singular but so too are B2~ and C2E2;

furthermore, now OBI is non-singular. The relevant analysis is still straightforward but more
complicated and is omitted for convenience.

4. ENERGY RELEASE RATE

To determine the amount of energy dissipated per unit length of crack advance, we consider
the tear extended by an infinitesimal length E with components Ea and Eb in the two fibre
directions. Then the new crack tip is at the particle X= (Ea, Eb) with E

2 = E/ + E/

With zero stiffening of the sheet, the total strain energy is zero; hence the total energy of the

_--_~D, 0
I 2

I I
I I
I I
I I

o I------- -----c,

Fig. 3. Tear bending back on itself.
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system is the energy of the dead loads on the boundary:

E=-£X.dF, (4.1)

where the line integral is taken counterclockwise around the perimeter r of the sheet. In terms
of the initial configuration, we write

E = - 1. x(X)· dF(X). (4.2)1ro

As the tear extends, r changes and energy is released.
We consider first the case when the tear extends by Ea in the positive direction DC along the

a-fibre passing through the crack tip; then the new crack tip 0' is at the point (Ea, 0). When Ea
is positive, the orientation of the a-fibres as they pass through all the points in the infinitesimal
band 0 ~ X ~ Ea changes by 8a where

Y<O
Y>O.

(4.3)

Hence all the points on the perimeter r move by 8x where

I
(80 - a+)Ea on OAB

8x= 0 on BCD

(ao - a_lEa on DEAO

and E changes by 8E with

8E - - 1. 81(X)' dF(X).ho

Thus the energy release rate is

Wa = - lim (8E/Ea )
£a-O

= (ao-a+)' Fs +(ao-8_)' (-FD)

= a-' FD-8+' Fs -80'(FD- Fs)

= IFDI+IFsl-IFD-Fsl·

(4.4)

(4.5)

In contrast, when Ea is negative (so that the tear bends back on itself by extending in the
opposite direction along OD) the a-direction would not change in the band E. < X < 0 and
therefore W. would then be zero.

Similarly the energy release rate for crack extension in the positive b-fibre direction OD is

Wb = IFEI + IFc1-IFE- FcI (4.6)

and zero if the crack were to extend along OB. In both cases W. and WI> are obviously
non-negative.

For a general direction of crack advance, the points on r move by 8x where

(ao - a+)E.,+ +(bo- b-)Eb+ onOAB

(bo-b_)Eb+ onBC

8x= 0 on CD

(80-a-)E.+ on DE

(ao-a-)£,,+ +(bo-b+)EI>+ onEA (4.7)
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with E,,+ denoting the larger of Ea or zero, and similarly for Eb+' Then the rate of energy release
is

~ = + lim 1 8x· dF
E....oho

= ~a(cos 8t + ~b(sin 8)+.

Here the angle 8 is defined through

(4.8)

cos 8 =lim (!a),
.....0 E

sin 8 = lim (!!.);
E....O E

(4.9)

we note that it is not the angle of actual advance in the deformed configuration.

5. ELASTIC STIFFENING

The previous two sections treat the case of a reinforced sheet with negligible strength apart
from its two families of reinforcing fibres. The equivalent results for a sheet with non-zero
elastic stiffening are much more complicated though taking a comparatively simple form if Pipkin's
strain energy function (2.10) is assumed. Then (3.3), for example. is replaced by

P = bo' k x (Fe - Gk x xc)
- boo k Xa_ '

and the relevant expression in (3.5) is

(5.1)

where (2.13) shows that

K'- = /FD- GkxxD/' (5.3)

These expressions are given by simple substitution of F - Gk x x for F wherever it appears
in the corresponding quantity for pure networks. Equivalent expressions can be obtained for
Q_, Po and 00. They show that the loads carried at the crack tip can still be expressed directly
in terms of boundary values, but not now only in terms of the given tractions.

The generalisation of expression (4.5), giving the energy release rate associated with crack
propagation in the .-direction, is

~a = IFD- Gk x xDI + IFB- Gk X xBI-IFD - FB- Gk X (XD -xB)I. (5.4)

This result was brought to my attention by A. C. Pipkin, and can be deduced from an extension
of the analysis leading to (4.5). The total energy of the system is now expressible as

E =1W dA _" x . dF
910 Tr

= G(Ao- A)-fr x' dF,

where Ao and A are the areas of the sheet in its undeformed and deformed states respectively.
Applying Green's theorem to the plane area A, in this expression, we obtain

E = GAo -!G fr k . x X dx - t x. dF
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to replace (4.5). As the tear extends by ~a in the a-direction, the energy changes by

~E = - 1. HOk' ~x(X)x dx(X) +~Ok . x(X) x ~(dx) + ~x(X) . dF}
Tro

= - ~O 1. d(k' l( x ~x) + fr {Ok' dx x ~x - ~x . dF}Tro ro

= 1. ~l(' d(Gk x x - F),rro

where ~l( is defined by (4.4) and (4.3) as before. Hence F- Ok x x again replaces F in the
previous analysis, giving the result (5.4).

A similar expression holds for ~b, the energy release rate for the tear's extending in the
b-direction. The result for a general direction of tear extension is then immediately given by
(4.8). Again we note that all these expressions are still given in terms of boundary values.

6. STIFF SHEETS

Comparison of (5.4) with expressions such as (5.2) and (5.3) shows that there are no simple
relations between.the energy release rates ~a, ~b, ~ and the tip forces Po, P_, Qo and Q_. This
is in contrast with the situation pertaining in linear elasticity, in which the energy release rates
can be simply expressed [9,36] in terms of the stress intensity factors at the crack tip. It is in
particular contrast with the predictions for linearly elastic sheets with inextensible cords, for
which Pipkin and Rogers [28] have deduced that

with
Po = P-, Qo = Q-,

(6.1)

(6.2)

and where H* is the harmonic mean of the two segments H+ and H_ of the b-fible passing
through the crack tip, and L* refers to the equivalent a-fibres:

21H* = IIH+ + IIH_, 21L* = IIL+ + IlL. (6.3)

In this section we show that in fact there is no contradiction between these results and those
obtained by a suitable Iinearisation of the finite elasticity results. The linear theory should be
appropriate for problems in which the shear modulus 0 is large compared with the applied
tractions, with consequentially infinitesimal displacement at the boundaries. In that case, the
position vectors of B, C, D and E are approximated by

(6.4)

Then

and for sufficiently large 0 the denominator of (5.2) is therefore dominated by

the numerator by

and
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Here FEI and FCI denote the X-components of FE and Fe; the Y-components will be written as
FE2, Fo , etc.

Hence we obtain

A similar analysis shows that Po has tbe same asymptotic limit, and also that Qo - Q-, tbus
confirming (6.2).

To obtain the asymptotic values of ~. and ~b for large G we note that, for example,

2 2 I
IFE - Gk x xEI-IFE + GLJI ={FEI + (FEl + GL) }i

= GL{1+hL_ +2~~_2+ O(O-3)}

so tbat

~b =IFE- GkxxEI+IFc - GkxxcI-IFE-Fc - GkX(xE-xc)1

_ GL +GL - G(L + L )+ F. + F. -(F, + F. )+_1 {F~I +F~I_ (FEI- FCI )2}
- + + - E2 0 E2 0 2G L_ L+ L+ + L_

- P0
2jGL*

as required. A similar analysis confirms the remainder of (6.1).

7. FRACTURE CRITERIA

For finite deformations of highly anisotropic sheets, we propose three fracture criteria
whicb are analogous to the stress intensity and energy release rate criteria of linear elasticity.

The simplest and most obvious criterion to specify is that based on tensile failure of the
fibres. This states that a crack will propagate when a tensile fibre-force reaches a critical value;
this critical value need not be the same for each family of fibres. Thus we say that tbe tear will
extend instantaneously along the b-direction, breaking a-fibres, when eitber Po or P_ reaches a
critical value Pc" and that it will extend in the a-direction when Qo or Q_ reaches a possibly
different critical value Qcr' With this hypothesis the tear will continue in a stair-step shape
(referred to the original configuration), though possibly the "steps" will be sufficiently small to
give a relatively smooth trajectory.

Since the singular stresses occur along the entire length of both tip-fibres, a tensile
fibre-force criterion would predict that a relative weakness in either of them could lead to a
fracture elsewhere than at the end of the tear; this would result in another crack developing in
the sheet. For this possibility we require the variations of the fibre-forces along OB, DC, OD
and OE, determined as follows. For illustration we consider Oc. Equation (2.15) gives

M(X) = k· ao(X) x FCD(X), N(O)={-k'boXFC, Y= 0+,
-k' b_ x FC = 0, Y = 0-,

(7.1)

for an unstiffened network, with Do, bo and b_ determined from (2.11) and (2.12). Then. using
(2.14), the fibre force along OC is given by

F(X. 0+) - F(X, 0-) = {(Fc x bo' k)ao(X) - (FCD x 8o(X)· k)bol/lo
+(FCD x 8o(X)· k)b_IJ_, (7.2)

where

10 = 8o(X) x bo . k. L = 8o(X) x b_ . k.
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Equation (7.2) reduces to

T. G. ROGERS

F(X, 0+)- F(X, 0-) =PO(X)ao(X)

where the magnitude of the fibre force in OC is

and

ao(X) = AF(X) =FCD(X) - FBC<X)
16F(X)1 IFcD(X)-FBC<x)j"

(7.3)

(7.4)

Similar expressions may be found for the fibre forces in OB, OD and OE (and we also note that
the results of (3.5) are confirmed when we substitute X = 0 and Y = 0 into these expressions).
The generalisation to elastically stiffened sheets is again given by simply replacing F by
F- Gkxx.

Although maximum stresses are usually assumed to occur at the crack tip, it is not apparent
that this is always the case for networks. Thus it is necessary to investigate the distribution of
singular stress elsewhere even when the sheet has uniform fracture strength.

An alternative criterion for fracture is that relating to the energy release rate '0. As in
isotropic elasticity this states that the crack extends when '0 attains a critical value 'OCT'
Equation (4.8) shows that the maximum value of '0 is 'Omax where

(7.5)

and is attained when 8 is given by

Thus according to this criterion the crack extends when

'Omax = 'Ocn

and in the direction determined from

(7.6)

(7.7)

Then with this criterion the tear will continue in a smooth trajectory (referred to the original
configuration), and its shape would be found by integrating the differential equation

dY/dX = 'Ob(X, Y)/'Oa(X, V). (7.8)

The third criterion for fracture is based on the observation that, for linearly elastic
behaviour, the quantity which is directly related to the stress intensity factor [I 2, 27J in crack
extension in the a-direction is PoIvL*, not Po, and OoIvH* not 00 for extension in the
b-direction. Pipkin[37] has therefore suggested that for linearly elastic materials, when the
critical fibre force criterion seems to be intuitively reasonable, the actual criterion to use might
be the critical stress criterion, namely that fracture occurs when

Oo/vH* =Ka or PolvL*=Kb• (7.9)

where Ka and Kb are stress intensity factors associated with crack advance in the a· and
b-directions respectively.

For large deformations, the relations (7.9) are difficult to generalise-should we use P_ for
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Po. for example, and what are the appropriate values for L· or H·? However, we note that
(6.1) shows that (7.9) could be rewritten as

(7.10)

where KG = K"/yG and K. = K"/YG. This suggests that a possible, simple generalisation of
the critical stress criterion which would be appropriate for finite deformations is (7.10) itself,
with KG and K. simply being two material parameters. Such a criterion, though expressed in
terms of critical energy release rates, would produce the stair-step shape of tear (referred to the
original configuration) similar to that predicted by the critical fibre-force criterion.

8. TEARING OF A REeT ANGULAR SHEET

As a simple example we consider the case of uniform biaxial tensile loading Til and T2.1, per
unit length, on the edges of the initially rectangular sheet - L :s;; X:s;; L+, - H_:s;; Y:S;; H+ as
shown in Fig. 4. The sheet is unstiffened and the tear extends from (-I, -H_) to (0,0), with
I .. 0, and lies within the bounding rectangle -I:s;; X :s;; 0, - H_ :s;; Y:s;; 0.
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1-- -- ,..- l .... '0 l_
- ~- -
V :H_
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AlB

--+
T,

c

i

!

o
1

0
/'

I I I l7
A_

B

E

T,4--

Fig. 4. Undeformed and deformed configurations of a torn rectangular sheet subjected to biaxial tensile
loading (T2 = 2Td.
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With F =0 at the crack tip 0, integration of the boundary tractions gives

FB = -IT,j, Fe = H_T,i-(L+ + I)j, FD = HT,i-IT~,

FE = H_T1i+ (L -l)T,j, (8.1)

where H =H+ + H_, the width of the sheet. Substitution into (3.5) then yields

Po =L+H_ Td(L+ + I), Qo = IH+ T21H,

P_ =(H2T,2+ 12Tl}!H_IH, Q_ ={H_2TI
2+(L+ + 1)2Tl~II(L+ + l)

and (4.5) and (4.6) give

(8.2)

<6" =(H2T,2+ PTl~+ lT2- HTI ,

C§b = {H_2TI
2+(L -l)2Tl~+{H_2TI

2+(L+ + l)2Tl}L LT2. (8.3)

The implications for fracture are straightforward. Equations (8.2) show that P_ and Q_ are
greater than Po and Qo respectively. Hence the fibre-force criterion would predict that
extension of the tear would occur in the b-direction (by breaking the a-fibre) when T, and T2
increase to values such that P_ attains Per first, before Q_ reaches the other critical value Qcr;
these conditions are equivalent to

(8.4)

where

(8.5)

Similarly fracture would occur along the a-direction when

(8.6)

The shape of any subsequent tearing can be controlled by suitable changing of the boundary
tractions T1 and T2• For example, suppose that conditions (8.6) were satisfied (with fracture
initiating in the a-direction) and that TI and T2 were subsequently controlled so that T1

remained constant and T2 were suitably reduced in order to satisfy (8.6). Then tearing would
continue to take place in the a-direction with P_ actually decreasing as I increased. If, however,
T1 and T2 were controlled so that T1 were increased and T2decreased such that (8.6) continued
to be satisfied, then tearing would continue in the a-direction only until I were such that
f(TtfT2) beca:me zero; subsequent tearing would then take place in the b-direction, with T1 and
T2 controlled to satisfy (8.4).

If the tractions were left unaltered from their values at initiation of fracture, then catastro­
phic tearing would result. For example, if conditions (8.4) were satisfied, then initial fracture
would result in H_ increasing; if T1 and T2 were not suitably changed to take this increase into
account, then P_ would increase, implying further extension of the tear in the b-direction, and
hence further increase in H_. Though Q_ might also increase, (8.5) shows that the crack
extension would not change direction, since f(TtlT2) increases with increasing H_. Similarly, if
the conditions (8.6) were to be attained, then catastrophic tearing would be initiated along the
a-direction. However, (8.5) and (8.4) show tht, for the special case 1= 0 (a tear coinciding with
the b-direction), this citerion predicts that fracture, if it occurs, will always continue in the
b-direction. We also note that conditions (8.4H8.6) are all independent of L.

The singular stresses in the tip-fibres OB. OC, OD and OE should also be determined lest
the maximum force should occur elsewhere than at the crack tip. From (7.3) and (7.4) it is easily
shown that the fibre force in OC is

(8.7)
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and in this simple example it is straightforward to determine the other forces as
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Qo( Y) =(H+ - Y)IT21H,

1
{H2TJ2 +(X+1)2Tl}!H_1H,

P-(X) =
(L + X)H- T./(L -I),

Q_( Y) ={(L+ + l'fTl + (Y + H_)2 T1
2PU(L+ + I),

-L=S;.X=S;.-I

-H_=S;. Y=S;.O.

(8.8)

(8.9)

(8.10)

Clearly in each case the maximum value occurs at the crack tip so if the fracture strength
parameters Pcr and Qcr are independent of position then the fibre force criterion would show
that fracture can occur only at the tip.

The alternative fracture criterion (7.7) based on a maximum energy release rate predicts
extension of the tear when TJ and T2 increase to values such that

(8.11 )

where <§a and <§b are given by (8.3); the direction 8 of extension of the tear would be
tan-J(<§J<§a)' The subsequent crack locus would then be traced by the point (X', V') given by

dY' {( Y' + H_'f + t2(L _1)2p + {( Y' + H_)2 + t2(L+ +1)2}J - tL
dX' = {t2(X' + 1)2 + H2}~ + t(X' + I) - H -

with Y' = 0 when X' = 0 and where t = t(X', V') is given implicitly through

{(t2X,2 + H2-p. + t(X' + I) - H}2

+[{(Y'+ H_)2+ t2(L -1'f}!+{(Y' + H_)2+ t2(L+ +1)2}L tLf = C§~r/Tt

The conditions for fracture predicted by the two different criteria are obviously quite
different. Only in the special limit of almost uniaxial tension (T2/ T, -+ 0) are the predictions
similar, with the energy release rate criterion then also predicting tearing along the b-direction.
The conditions become even more dissimilar in form when elastic stiffening is incorporated into
the theory.

The third criterion-the generalised stress intensity criterion (7.IO)-predicts the same
distinctive stair-step shape as the fibre-force criterion. However, the actual shapes can be quite
different. For the rectangular sheet considered above, this new criterion predicts that extension
of the tear would occur in the .-direction when T1 and T2 are such that roa attains K/ first,
before <§b reaches the other critical value K/; these conditions are equivalent to

(8.12)

with

similar conditions can be found for extension in the b-direction. If T, is subsequently kept
constant and T2 suitably reduced for controlled extension, then (8.12) and (8.13) together show
that <§b increases with the consequentially increasing I; hence the tearing will now continue in
the .-direction until 1 becomes such that <§b equals K{ Any further tearing would then take
place in the b-direction, since <§a would then decrease from its critical value K/. Such a change
in direction is in sharp contrast with the continued tearing in the a-direction predicted by the
fibre-force criterion.

9. DISCUSSION

The preceding sections demonstrate the advantages of the inextensible network theory in
that its simplicity allows analytical solutions and predictions to be produced for otherwise
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insoluble boundary value problems. Nevertheless it is necessarily only an idealised model for
real highly anisotropic sheets. As such its results must be interpreted with care and caution,
whilst also recognising that in other contexts the inextensible-fibre theory has provided valuable
and correct predictions for the behaviour of real materials.

The results emphasise the difference between the behaviour of strongly anisotropic sheets
and the corresponding and better understood behaviour of isotropic materials. This difference is
particularly marked in its implications for fracture.

In fracture theory the conventional procedure is to determine functions of the applied loads
and geometry of a cracked body which are believed to characterise the severity of deformations
around the crack tip; the most popular functions are stress intensity factors, energy release rate
or, if plastic deformation is prominent, the extent of the surrounding plastic zone [36]. Fracture
is then predicted when one or more of these functions attain critical values, which are treated
as material parameters. This is the approach which we also have adopted in this paper (Section
7). We also take the view[37] that a fracture criterion is simply a constitutive assumption for a
given material and therefore expect that, like other material properties, the criterion will take
different forms for different types of materials.

Only experimental investigations with highly anisotropic sheets will determine which, or
indeed whether any, of the material parameters ~CfJ Per, Qcr, K", Kb are appropriate for
predicting quasi-static fracture of highly deformable sheets. The criterion of maximum energy
release rate predicts smooth crack trajectories which do not follow the fibre-firections; these
may be reasonable for brittle materials, but the common-place experience of tears in fabrics
suggests that the predictions are not plausible for large deformations of highly anisotropic
sheets. The two parameters Ko and Kb have the attractive property that for small elastic
deformations the fracture criterion (7.10) in which they are involved does reduce to the
conventional critical stress criterion. Finally we remark that whenever the highly anisotropic
sheets can be viewed as unstiffened or weakly stiffened nets of inextensible 'cords, then the
obvious criterion to use would seem to be that based on maximum tensile fibre force.

Acknowledgements-The work described in this paper was initiated whilst I was at Brown University on a visit supported
by the Science Research Council. I gratefully acknowledge this support.

My thanks are also due to Prof. A. C. Pipkin for his interest and helpful discussions.

REFERENCES
I. R. F. S. Hearmon, An Introduction to Applied Anisotropic Elasticity. Clarendon Press, Oxford (l96\).
2. S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body. Holden-Day, San Francisco (1963).
3. A. E. Green and W. Zerna, Theoretical Elasticity. Clarendon Press, Oxford (1954).
4. R. M. Jones, Mechanics of Composite Materials. McGraw-Hili. New York (\975).
5. R. Hill, The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950).
6. J. R. Rice, 1 Mech. Phys. Solids 11,63 (1973).
7. J. D. Eshelby, W. T. Read and W. Shockley, Acta Metall. I, 251 (1953).
8. A. N. Stroh, Phil. Mag. 3, 625 (1958).
9. G. C. Sih, P. C. Paris and G. R. Irwin. Int. J. Fract. Mech. I, 189 (1965).

10. J. D. Eshelby, Prospects in Fracture Mechanics (Edited by G. C. Sih, H. C. van Elst and D. Broek). Noordhoff.
Leyden (1974).

II. D. L. Clements, Q. Appl. Math. 34, 437 (1977).
12. A. J. M. Spencer, Q. J. Mech. Appl. Math. 31,437 (1979).
13. J. E. Adkins and R. S. Rivlin, Phil. Trans. Roy. Soc. Lond. A %48. 201 (1955).
14. A. E. Green and J. E. Adkins, Large Elastic Deformations. Clarendon Press. Oxford (1960).
15. A.1. M. Spencer, Deformations of Fibre-Reinforced Materials. Clarendon Press. Oxford (1972).
16. A. C. Pipkin, Composite Materials (Edited by G. P. Sendeckyj). Vol. 2. Academic Press, New York (1974).
17. A. C. Pipkin, Advances in Applied Mechanics 19. I (1979).
18. T. G. Rogers. Rheol. Acta 16, 123 (1977).
19. G. C. Everstine and A. C. Pipkin, Z angew. Math. Phys. n, 825 (1971).
20. G. C. Everstine and A. C. Pipkin. J. Appl. Mech. 40, 518 (1973).
21. A. J. M. Spencer, Int. 1 Solids Structures 10, 1103 (1974).
22. l. Choi and C. O. Horgan, J. Appl. Mech. 44, 424 (1977).
23. l. Choi and C. O. Horgan, Int. J. Solids Structures 14, 187 (1978).
24. A. C. Pipkin and T. G. Rogers, 1 Appl. Mech. 38, 634 (1971).
25. A. H. England and T. G. Rogers, Q. J. Mech. Appl. Math. %6, 303 (1973).
26. 1. N. Thomas and A. H. England, J. Inst. Math. Applics. 14.347 (1974).
27. V. Sanchez-Moya and A. C. Pipkin, Int. J. Solids Structures 13.571 (1977).
28. A. C. Pipkin and T. G. Rogers, Mechanics Today 5, 397 (1980).
29. T. G. Rogers, Theoretical Rheology (Edited by J. F. Hutton, 1. R. A. Pearson and K. Walters). Applied Science,

London (1975).



Deformed sheets reinforced with inextensible fibres 721

30. T. G. Rogers and A. C. Pipkin. Q. J. Mech. Appl. Math. 33. 447 (1980).
31. A. C. Pipkin, Q. AppL Math. 37, 343 (1980).
32. R. S. Rivlin. 1 Rat. Mech. Anal. 4, 951 (1955).
33. J. E. Adkins. PItil. Trans. Roy. Soc. umd. A249. 125 (1956).
34. A. C. Pipkin. Q.l Meth. Appl. Math. 34. (1981).
35. A. C. Pipkin.llnst. Math. Applies. 24. (1981).
36. J. R. Rice. Fractll.R, an Advanced Treatise (Edited by H. Liebowitz), Vol. 2. Academic Press. New York (1%8).
37. A. C. Pipkin. Fracture mechanics of fiber-reinforced materials. Brown University Report. Providence. Rhode Island;

and private communication.

55 Vol. 18. No. So-F


